Prima esercitazione progettuale Progetto di un solaio laterocementizio

Esempio numerico di applicazione del Metodo delle Forze per l'analisi del solaio

Risoluzione diretta tramite l'applicazione del metodo delle forze.

La trave continua ad n campate è uno schema n-1 volte iperstatico. Nel caso in esame, dunque, si tratta di uno schema 2 volte iperstatico per la cui risoluzione si è soliti considerare il sistema isostatico principale ottenuto sconnettendo la trave in corrispondenza degli appoggi interni ed ivi applicando le reazioni X_B ed X_C dell'incastro interno. In questo modo si possono scrivere le due equazioni dei tre momenti derivanti dall'imposizione delle condizioni di congruenza. Esse costituiscono un sistema (lineare) nelle incognite X_B ed X_C che, in forma matriciale, si può scrivere come segue:

$$\begin{bmatrix} \frac{L_{1}}{3EI_{1}} + \frac{L_{2}}{3EI_{2}} & \frac{L_{2}}{6EI_{2}} \\ \frac{L_{2}}{6EI_{2}} & \frac{L_{2}}{3EI_{1}} + \frac{L_{3}}{3EI_{2}} \end{bmatrix} \begin{bmatrix} X_{B} \\ X_{C} \end{bmatrix} = \begin{bmatrix} -\frac{mL_{S}}{6EI_{3}} + \frac{p_{1}L_{1}^{3}}{24EI_{1}} + \frac{p_{2}L_{2}^{3}}{24EI_{2}} \\ \frac{p_{2}L_{2}^{3}}{24EI_{2}} + \frac{p_{3}L_{3}^{3}}{24EI_{3}} \end{bmatrix}$$

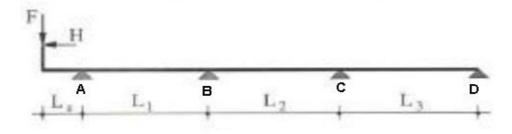
In forma simbolica si può scrivere

$$\begin{bmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{bmatrix} \begin{bmatrix} X_B \\ X_C \end{bmatrix} = \begin{bmatrix} \delta_{0,1} \\ \delta_{0,2} \end{bmatrix}$$

Invertendo la matrice e supponendo uguali le rigidezze EI, si ottiene:

$$\begin{bmatrix} X_{B} \\ X_{C} \end{bmatrix} = \frac{6}{4L_{1}L_{2} + 4L_{2}L_{3} + 4L_{1}L_{3} + 3L_{2}^{2}} \begin{bmatrix} 2 \cdot (L_{2} + L_{3}) & -L_{2} \\ -L_{2} & 2 \cdot (L_{1} + L_{2}) \end{bmatrix} \begin{bmatrix} -\frac{mL_{1}}{6} + \frac{p_{1}L_{1}^{3}}{24} + \frac{p_{2}L_{2}^{3}}{24} \\ \frac{p_{2}L_{2}^{3}}{24} + \frac{p_{3}L_{3}^{3}}{24} \end{bmatrix}$$

Nelle due formule precedenti sono stati indicati genericamente i carichi p_i agenti su ognuna delle campate ed il momento m rativo all'appoggio omonimo. Tali grandezze dipendono, ovviamente, dalla condizione di carico e, dunque, è possibile determinare il valore delle incognite iperstatiche per ognuna di esse sostituendo a p_i e m il valore opportuno.



Sostituzione dei valori numerici

- Luci delle varie campate

$$L_{sb}$$
= 1.15 m
 L_{1} = 5.25 m
 L_{2} = 6.10 m
 L_{3} = 4.40 m

$$\mathbf{D} = \begin{bmatrix} 3.7833 & 1.0167 \\ 1.0167 & 3.5000 \end{bmatrix}$$

$$[\mathbf{D}]^{-1} = \begin{bmatrix} 0.2867 & -0.0833 \\ -0.0833 & 0.3099 \end{bmatrix}$$

$$\begin{bmatrix} X_B \\ X_C \end{bmatrix} = \begin{bmatrix} 0.2867 & -0.0833 \\ -0.0833 & 0.3099 \end{bmatrix} \begin{bmatrix} -\frac{mL_S}{6} + \frac{p_1L_1^3}{24} + \frac{p_2L_2^3}{24} \\ \frac{p_2L_2^3}{24} + \frac{p_3L_3^3}{24} \end{bmatrix}$$

- Valori dei carichi

$$g_k+g_k'=$$
 5.80 kN/m
 $q_k=$ 2.00 kN/m

$$g_{k,sb}+g_{k,sb}'=$$
 4.30 kN/m $F_k=$ 1.50 kN $q_{k,sb}=$ 4.00 kN/m $H_k=$ 1.00 kN

$$F_k = 1.50 \text{ kN}$$

 $H_k = 1.00 \text{ kN}$

- Combinazioni di carico allo SLU

- COMBINAZIONE 1 (SLU):

$p_{sb}=$	4.30 kN/m
$F_d =$	1.50 kN
$H_d =$	0.00 kN
m=	4.57 kNm
$p_1 =$	11.12 kN/m
$p_2=$	5.80 kN/m
$p_3=$	11.12 kN/m

$X_B^{(1)} = 25.95 \text{ kNm}$ $X_C^{(1)} = 19.41 \text{ kNm}$ $\delta_{0,1}$ = 117.902 $\delta_{0,2}$ = 94.3223

- COMBINAZIONE 2 (SLU):

$$\begin{array}{lll} p_{sb} = & 12.02 \text{ kN/m} \\ F_d = & 2.10 \text{ kN} \\ H_d = & 1.50 \text{ kN} \\ m = & 11.86 \text{ kNm} \\ p_1 = & 5.80 \text{ kN/m} \\ p_2 = & 11.12 \text{ kN/m} \\ p_3 = & 5.80 \text{ kN/m} \end{array}$$

- COMBINAZIONE 3 (SLU):

$$p_{sb}$$
= 4.30 kN/m $\delta_{0,1}$ = 168.216 $X_B^{(3)}$ = 37.75 kNm F_d = 1.50 kN $\delta_{0,2}$ = 125.754 $X_C^{(3)}$ = 24.96 kNm

$$H_d$$
= 0.00 kN m= 4.57 kNm

$$p_1 = 11.12 \text{ kN/m}$$

$$p_2 = 11.12 \text{ kN/m}$$

$$p_3 = 5.80 \text{ kN/m}$$

- COMBINAZIONE 4 (SLU):

m= 11.86 kNm $p_1=$ 5.80 kN/m

 $p_2 = 11.12 \text{ kN/m}$

 $p_3 = 11.12 \text{ kN/m}$

- Combinazioni di carico allo SLS

- COMBINAZIONE RARA:

$p_{sb}=$	8.30 kN/m	$\delta_{0,1} =$	113.611	$X_B^{(R)} =$	24.12	kNm
$F_d =$	1.50 kN	$\delta_{0,2} =$	101.454	$\mathbf{X_C}^{(\mathbf{R})} =$	21.98	kNm
$H_d =$	1.00 kN					
m=	8.21 kNm					
$p_1 =$	7.80 kN/m					
$p_2=$	7.80 kN/m					
$p_2 =$	7.80 kN/m					

- COMBINAZIONE FREQUENTE:

$$\psi_1 = 0.50$$

 $X_B^{(F)} = 21.22 \text{ kNm}$

 $X_C^{(F)} = 19.11 \text{ kNm}$

$$p_{sb}$$
= 6.30 kN/m
 F_d = 1.50 kN
 H_d = 0.50 kN
 m = 6.39 kNm

m=
$$6.39 \text{ kNm}$$

 p_1 = 6.80 kN/m
 p_2 = 6.80 kN/m

$$p_3 = 6.80 \text{ kN/m}$$

- COMBINAZIONE QUASI-PERMANENTE:

$$p_{sb} = 5.10 \text{ kN/m}$$

$$F_d = 1.50 \text{ kN}$$

$$H_d$$
= 0.20 kN
m= 5.30 kNm
 p_1 = 6.20 kN/m

$$p_2 = 6.20 \text{ kN/m}$$

$$p_3 = 6.20 \text{ kN/m}$$

$$\psi_2 = 0.20$$

$$\psi_2 = 0.20$$

$$\Psi_2 = 0.20$$

$$X_C^{(F)} = 17.38 \text{ kNm}$$

 $\delta_{0,1}$ = 99.7185

 $\delta_{0,1}$ = 91.3832

 $\delta_{0,2}$ = 80.6426

 $\delta_{0.2}$ = 88.4468