Stability of Industrial Columns

According to EN 1993-1: 2005 and the Italian Code

Symbols

resistance Buckling

6.3 Buckling resistance of members

6.3.1 Uniform members in compression

6.3.1.1 Buckling resistance

A compression member should be verified against buckling as follows:

$$\frac{N_{Ed}}{N_{h,Rd}} \le 1.0$$

where N_{Ed} is the design value of the compression force;

N_{b,Rd} is the design buckling resistance of the compression member.

(3) The design buckling resistance of a compression member should be taken as:

$$N_{b,Rd} = \frac{\chi A f_y}{\gamma_{M1}}$$
 for Class 1, 2 and 3 cross-sections (6.47)

$$N_{b,Rd} = \frac{\chi A_{eff} f_y}{\gamma_{M1}}$$
 for Class 4 cross-sections (6.48)

where χ is the reduction factor for the relevant buckling mode.

NOTE For determining the buckling resistance of members with tapered sections along the member or for non-uniform distribution of the compression force second order analysis according to 5.3.4(2) may be performed. For out-of-plane buckling see also 6.3.4.

For axial compression in members the value of χ for the appropriate non-dimensional slenderness $\bar{\lambda}$ should be determined from the relevant buckling curve according to:

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} \quad \text{but } \chi \le 1,0 \tag{6.49}$$

where
$$\Phi = 0.5 \left[1 + \alpha \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda}^2 \right]$$

$$\overline{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}}$$
 for Class 1, 2 and 3 cross-sections

$$\overline{\lambda} = \sqrt{\frac{A_{\text{eff}} f_y}{N_{\text{cr}}}} \quad \text{ for Class 4 cross-sections}$$

is an imperfection factor

is the elastic critical force for the relevant buckling mode based on the gross cross sectional properties.

The imperfection factor α corresponding to the appropriate buckling curve should be obtained from Table 6.1 and Table 6.2.

Table 6.1: Imperfection factors for buckling curves

Buckling curve	a ₀	a	ь	С	d
Imperfection factor α	0,13	0,21	0,34	0,49	0,76

definition Slenderness

(1) The non-dimensional slenderness $\overline{\lambda}$ is given by:

$$\overline{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}} = \frac{L_{cr}}{i} \frac{1}{\lambda_1}$$
 for Class 1, 2 and 3 cross-sections (6.50)

$$\overline{\lambda} = \sqrt{\frac{A_{\text{eff}} f_y}{N_{\text{cr}}}} = \frac{L_{\text{cr}}}{i} \sqrt{\frac{A_{\text{eff}}}{A}} \quad \text{for Class 4 cross-sections}$$
 (6.51)

where L_{cr} is the buckling length in the buckling plane considered

i is the radius of gyration about the relevant axis, determined using the properties of the gross cross-section

$$\lambda_1 = \pi \sqrt{\frac{E}{f_y}} = 93.9\epsilon$$

$$\epsilon = \sqrt{\frac{235}{f_y}} \quad (f_y \text{ in N/mm}^2)$$

NOTE B For elastic buckling of components of building structures see Annex BB.

Figure 6.4: Buckling curves

Buckling curves - Sections

Cross section		Limits			Buckling curve	
				Buckling about axis	S 235 S 275 S 355 S 420	S 460
			$t_f \leq 40 \; \mathbf{mm}$	y-y z-z	a b	a ₀
Rolled sections h	h/b >	40 mm < t _f ≤ 100	y – y z – z	b	a a	
	<1,2	t _f ≤ 100 mm	y – y z – z	b c	a a	
	ż		$t_{\rm f}\!>100~{\rm mm}$	y – y z – z	d d	c c
ions	*t, #t,		$t_{\rm f}\!\leq 40~{\rm mm}$	y-y z-z	ьч	ьс
Welded I-sections	y y y y		$t_{\rm f}\!>40~{\rm mm}$	y – y z – z	o d	υ d
Hollow sections		hot finished		any	а	a ₀
			cold formed	any	c	c

				Buckling curve	
Cross section		Limits	Buckling about axia	8 235 8 275 8 355 8 420	3 460
ed box fore	Wedded box	generally (except as below)	апу	ь	ь
Weld		thick welds: $a \ge 0.5t_f$ $b/t_f \le 30$ $h/t_w \le 30$	emy	¢	с
U.T. and sodions			sery	o	с
Leoctions	4		any	٥	ь

Stability of beam-columns

$$\frac{N_{\text{Ed}} \cdot \gamma_{\text{M1}}}{\chi_{\text{min}} \cdot f_{\text{yk}} \cdot A} + \frac{M_{\text{yeq,Ed}} \cdot \gamma_{\text{M1}}}{f_{\text{yk}} \cdot W_{\text{y}} \cdot \left(1 - \frac{N_{\text{Ed}}}{N_{\text{cr,y}}}\right)} + \frac{M_{\text{zeq,Ed}} \cdot \gamma_{\text{M1}}}{f_{\text{yk}} \cdot W_{\text{z}} \cdot \left(1 - \frac{N_{\text{Ed}}}{N_{\text{cr,z}}}\right)} \leq 1$$

Definition of the equivalent bending moment

Linear variation of the bending moment throughout the beam-column axis

$$|M_{a}|{\geq}|M_{b}|$$

$$\boldsymbol{M}_{\text{eq,Ed}} = \boldsymbol{0}, \boldsymbol{6} \cdot \boldsymbol{M}_{\text{a}} - \boldsymbol{0}, \boldsymbol{4} \cdot \boldsymbol{M}_{\text{b}} \geq \boldsymbol{0}, \boldsymbol{4} \cdot \boldsymbol{M}_{\text{a}}$$

Non-linear variation of the bending moment throughout the beam-column axis

Average value of the bending moment throughout the axis

$$\mathbf{M}_{eq,Ed} = 1, 3 \cdot \mathbf{M}_{m,Ed}$$

$$0,75\cdot M_{\text{max,Ed}} \leq M_{\text{eq,Ed}} \leq M_{\text{max,Ed}}$$