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1. Theoretical formulation 

The present short notes explain the basic features of the Theory of Thin Plates with 

particular emphasis to orthotropic ones.  

A final application of an approximate procedure based on the double Fourier series is 

also proposed and applied. 

 

 

Far from being a complete and exhaustive textbook on the theory of plates (which can be 

rather found within the texts mentioned in the last chapter) the present notes are only 

intended as a short guide for remarking the basic assumptions and the final results of the 

theory and supporting students in finding approximate solutions by using double Fourier 

series. 

 

 

1.1 Introduction and preliminary definitions 

A plate can be defined as a three-dimensional body characterized by the two basic 

geometric properties commented below [2]: 

- Thinness: one of the plate dimensions, its thickness, is much smaller than the other two ones; 

- Flatness: the midsurface of the plate, which is the locus of the points that halve the thickness 

“fibers” or “filaments”, is a plane. 

 

 

 
Figure 1: rectangular thin plate 

 

The bending problem in plates is completely described by the displacement field w(x,y) of the 

above mentioned mid surface: 

 

( )w w x,y=  . (1) 
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The other displacement components are zero on the midsurface (at least in the considered 

case of only transverse load applied on the plate) and can be easily derived depending as a 

function of w(x,y) as the following hypothesis, usually assumed for “thin plates”, is adopted: 

the general chord of the plate (obtained by intersecting the body with two non-

parallel planes orthogonal to the mid surface) remains perpendicular to the mid 

surface in the deformed configuration. 

1.2 Displacement field 

On the basis of the above kinematic assumptions briefly outlined above, the overall 

displacement field of the body can be easily derived as shown in the following subsections. 

1.2.1 Displacements in the x-z plane 

 
Figure 2: Displacement representation in the x-z plane 

y

w

x

∂
ϕ = −

∂
 ; (2) 

( ) ( )y

w(x,y)
u x,y,z x,y z z

x

∂
= ϕ ⋅ = − ⋅

∂
 . (3) 

 

1.2.2 Displacements in the y-z plane 

 
Figure 3: Displacement representation in the x-z plane 
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x

w

y

∂
ϕ =

∂
 ; (4) 

( ) ( )x

w(x,y)
v x,y,z x,y z z

y

∂
= −ϕ ⋅ = − ⋅

∂
 . (5) 

 

Consequently, the following differential relationships completely define the 

displacement field of thin plates in bending: 
 

w
u z

x

∂
= − ⋅

∂
 ; 

w
v z

y

∂
= − ⋅

∂
 . (6) 

1.3 Deformation field 

The strain expressions can be easily derived by using their general definition depending 

on the displacement components within the framework of the Theory of Continuum 

Mechanics: 
 

2

xx 2

u w
z

x x

∂ ∂
ε = = − ⋅

∂ ∂
 ; (7) 

2

yy 2

v w
z

y y

∂ ∂
ε = = − ⋅

∂ ∂
 ; (8) 

zz

w
0

z

∂
ε = =

∂
 ; (9) 

2

xy

u v w
z

y x x y

∂ ∂ ∂
γ = + = − ⋅

∂ ∂ ∂ ∂
 ; (10) 

xz

u w w w
0

z x x x

∂ ∂ ∂ ∂
γ = + = − + =

∂ ∂ ∂ ∂
 ; (11) 

yz

v w w w
0

z y y y

∂ ∂ ∂ ∂
γ = + = − + =

∂ ∂ ∂ ∂
 . (12) 

 

The above derivation of the complete strain field of the plate, points out other peculiarity 

of the thin plate model deriving directly by the initial kinematic assumptions: 

- equation (9) confirms that the general chord of the plate remains undeformed in z-

direction; 

- equations (11) and (12) remark that the model of thin plates is based on the hypothesis 

that the mentioned normal chord remains normal to the deformed configuration of the 

midsurface. 

1.4 Constitutive relationships 

 

The constitutive laws relating the strains and the corresponding stress field within an 

elastic body can be placed in the following general form: 
 

=σ Dε  ; (13) 
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D being the so-called stiffness matrix. Depending on the mechanical properties of materials, 

various possible expressions can be considered for the matrix D. 

The case of orthotropic materials (in two dimensions as considered for the particular 

hypotheses introduced in the case of plates) is among the simplest and most utilized ones. 

Equation (14) reports a reduced representation of the stiffness matrix D pointing out only the 

explicit expression of the terms directly involved in the derivation of the stress components 

depending on the non-zero strain components: 

 

( )

x x yx

y xy y

33

xy yx xy xy yx

55

66

E E 0 0 0 0

E E 0 0 0 0

0 0 D 0 0 01

1 0 0 0 G 1 0 0

0 0 0 0 D 0

0 0 0 0 0 D

υ 
 

υ 
 
 =
 − υ υ ⋅ − υ υ
 
 
 
  

D  . (14) 

 

The matrix terms in equation (14) provide the relationships between the non-zero strain 

components derived in the previous paragraph and the corresponding stresses. 

However, it is important to point out that, while σz can be approximately neglected as a 

result of the “thinness” hypothesis remarked at the beginning of the present notes, the two 

shear stresses τxz and τyz cannot be neglected for the sake of equilibrium, although the 

corresponding shear deformations are zero according to equations (11) and (12). Indeed, 

they only vanish as a result of the simplified kinematical hypotheses assumed for describing 

the plate behaviour in bending. 

1.5 Stress field 

The combined application of equations (13) and (14) points out the final definitions of 

three of the components of the stress field: 
 

( )x
xx xx yx yy

xy yx

E

1
σ = ⋅ ε + ν ε

− ν ν
 ; (15) 

( )y
yy yy xy xx

xy yx

E

1
σ = ⋅ ε + ν ε

− ν ν
 ; (16) 

xy xy xyGτ = γ  . (17) 

 

The other components can be derived by considering the equilibrium equation for 

continua in the absence of body forces: 
 

xyxx xz 0
x y z

∂τ∂σ ∂τ
+ + =

∂ ∂ ∂
 , (18) 

yx yy yz
0

x y z

∂τ ∂σ ∂τ
+ + =

∂ ∂ ∂
 . (19) 

 

Considering the former one, the following differential equation can be derived for τxz: 
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xyxz xx

z x y

∂τ∂τ ∂σ
= − −

∂ ∂ ∂
 , (20) 

yz yx yy

z x y

∂τ ∂τ ∂σ
= − −

∂ ∂ ∂
 . (21) 

 

The above relationships should be integrated with respect to z and the final relationship 

for τxz and τyz throughout the plate thickness could be derived by imposing that they should be 

zero on the two faces (namely, for z=±h/2). 

1.6 Generalized stresses 

Starting from the kinematic assumptions for the plate body, simplified relationships 

have been derived for describing displacement, strain and stress fields. 

In particular, equations (7), (8) and (9) suggest the definition of three “generalized” 

strain parameters related to the “curvature” of the plate along the two main directions: 
 

2

y 2

w

x

∂
χ = −

∂
 ,  (22) 

2

x 2

w

y

∂
χ = −

∂
 , (23) 

2

xy

w

x y

∂
χ = −

∂ ∂
 . (24) 

 

Generalized stresses can be defined starting for the point stresses determined in the 

previous paragraph with the aim of relating them to the above generalized strain parameters. 

 

 
Figure 4: Point stresses on the positive face of a segmental plate element 

 

In particular, the three stress components evaluated by equations (15), (16) and (17), 

emerging on the positive faces of the plate lateral boundary, have been represented in Figure 

4. The following generalized stresses can be defined: 
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h/2

xx xx

h/2

M z dz

−

= ⋅σ ⋅∫  ,  (25) 

h/2

yy yy

h/2

M z dz

−

= ⋅σ ⋅∫  ,  (26) 

h/2

xy xy

h/2

M z dz

−

= − ⋅ τ ⋅∫  ,  (27) 

h/2

yx yx

h/2

M z dz

−

= ⋅τ ⋅∫  .  (28) 

 

It is worth to precise that in the previous equations the torques have been assumed 

positive according to the reference system represented in Figure 4. 

Introducing equation (15) in (26) the following expression relating the bending moment 

Mxx to the above mentioned curvatures can be derived: 
 

2 2

xx x l2 2

w w
M D D

x y

 ∂ ∂
= − ⋅ + ⋅  ∂ ∂ 

 ,  (29) 

 

where 

 

( )

3
x

x

xy yx

E h
D

12 1
=

⋅ − ν ν
     and     

( )

3
yx x

l

xy yx

E h
D

12 1

ν
=

⋅ − ν ν
 . (30) 

 

Following the same procedure, the following definition of the bending moment in Myy 

can be derived: 

 
2 2

yy l y2 2

w w
M D D

x y

 ∂ ∂
= − ⋅ + ⋅  ∂ ∂ 

 ,  (31) 

 

with 

 

( )

3
y

y

xy yx

E h
D

12 1
=

⋅ − ν ν
     and     

( ) ( )

3 3
xy y yx x

l

xy yx xy yx

E h E h
D

12 1 12 1

ν ν
= =

⋅ − ν ν ⋅ − ν ν
 . (32) 

 

Finally, the torques can be also defined as functions of the conjugated curvature as 

follows: 

 
2

xy xy

w
M 2D

x y

∂
=

∂ ∂
 ,  (33) 

2

yx yx

w
M 2D

x y

∂
= −

∂ ∂
 ,  (34) 
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where 

 
3

xy yx xy

h
D D G

12
= =  .  (35) 

 

Furthermore, the shear forces acting on the x- and y-normal faces can be respectively 

derived as follows: 

 
h/2

x xz

h/2

T dz

−

= τ∫  ,  (36) 

h/2

y yz

h/2

T dz

−

= τ∫  .  (37) 

1.7 Equilibrium conditions 

Before of deriving the relations between the above generalized stresses as a result of the 

equilibrium conditions, it is useful to remark the convention utilized so far for defining the 

positive direction of the generalized stresses: 

- bending moments are assumed positive if they induce tension on the bottom face and 

tension of the top one; 

- torques have been considered positive according to the positive directions of the axes; 

- shear stresses are assumed positive if represented by a positive force on the positive face 

of the plate. 
 

 
Figure 5: Plan view of the signs of the generalized stresses applied on an elementary part of the plate 
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Considering a transverse load p0, ideally applied on the midsurface of the thin plate 

(practically, rather applied on one or both of their larger faces), a first equation derives by 

imposing the equilibrium condition in z direction: 
 

yx
x x y y 0

TT
T T dx dy T T dy dx p dxdy 0

x y

∂ ∂ 
− + + + − + + + =  ∂ ∂   

 ,  (38) 

 

and, after the due simplification: 

 

yx
0

TT
p 0

x y

∂∂
+ + =

∂ ∂
 .  (39) 

 

The equilibrium condition can be also imposed in terms of rotation, i.e. around the point 

P; first of all the equilibrium of moments in y-direction can be considered deriving the 

following relationship: 

 

yxxx
xx xx yx yx x

MM
M M dx dy M M dy dx T dydx 0

x y

∂ ∂ 
− + + + − + + − =  ∂ ∂   

 ,  (40) 

 

and the final differential equation: 
 

yxxx
x

MM
T

x y

∂∂
= +

∂ ∂
 .,  (41) 

 

Following a similar procedure, the rotation equilibrium around the point P can be 

considered also for moments in the x-direction: 

 

yy xy
yy yy xy xy y

M M
M M dy dx M M dx dy T dydx 0

y x

∂ ∂   
+ − − + − + + + =   

∂ ∂   
 ,  (42) 

 

and the final differential equation can be derived by simplifying the above one and 

introducing Myx in lieu of Mxy according to equations (33) and (34): 
 

yx yy
y

M M
T

x y

∂ ∂
= +

∂ ∂
 .  (43) 

1.8 Differential equation in terms of transverse displacement 

Introducing equations (41) and (43) in (39), the following equation can be obtained: 
 

22
yx yyxx

02 2

M MM
2 p 0

xx y

∂ ∂∂
+ ⋅ + + =

∂∂ ∂
 ,  (44) 

 

and, introducing therein equation (29), (31) and (34), the following final equation in terms of 

the transverse displacement w(x,y) can be finally written: 
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4 4 4

x y 04 2 2 4

w w w
D 2H D p

x x y y

∂ ∂ ∂
+ ⋅ + =

∂ ∂ ∂ ∂
 ,  (45) 

 

where 

 

l xyH D 2D= +  . (46) 
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2. Approximate Solutions 

Several methods for solving the partial-differential equation (45) taking into account the 

boundary conditions deriving by either restraints or loads applied on the boundary of the 

plate have been developed. In the present section, the method based on double Fourier series 

will be explained and applied. 

2.1 Solutions by double Fourier series 

Approximate solutions of the problem can be easily found for rectangular and simply 

supported plates by considering the double Fourier series. In particular, every function 

f=f(x,y) of two variables x and y can be generally expressed as a double series of sine and 

cosine terms. 

Since such a method can be utilized for approximating the function w=w(x,y) whose 

boundary value is zero as a result of the mentioned support conditions, only the sine terms 

can be utilized in the present case. Consequently, every function f=f(x,y) can be expressed as 

follows: 
 

ij
j 1 i 1

i x j y
f(x,y) f sin sin

a b

∞ ∞

= =

π π
= ⋅ ⋅∑∑  ,  (47) 

 

in which, as a result of the properties of the integral of sine functions, the following 

relationship can be stated for the coefficient fij: 
 

a b

ij

0 0

4 i x j y
f f(x,y) sin sin dxdy

ab a b

π π
= ⋅ ⋅ ⋅ ⋅∫ ∫  . (48) 

 

Consequently, if the load can be represented through the double Fourier series as 

follows: 
 

ij
j 1 i 1

i x j y
p(x,y) p sin sin

a b

∞ ∞

= =

π π
= ⋅ ⋅∑∑  ,  (49) 

 

with the following expression of the general terms of the series: 
 

a b

ij

0 0

4 i x j y
p p(x,y) sin sin dxdy

ab a b

π π
= ⋅ ⋅ ⋅ ⋅∫ ∫  . (50) 

 

the following relationship can be derived in the rather common case of uniformly distributed 

load p(x,y)=p0: 
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a b
0 0

ij 2
0 0

4p 16pi x j y
p sin dx sin dy

ab a b i j

   π π
   = ⋅ ⋅ =
    ⋅ ⋅ π   
∫ ∫       i, j=1,3,5,7… . (51) 

 

0

1000

2000

3000
0

1000

2000

3000

0

0.005

0.01

0.015

0

1000

2000

3000

0

1000

2000

3000
0

1000

2000

3000

0

0.005

0.01

0

1000

2000

3000  
a) m=n=1        b) m=n=3 

0

1000

2000

3000
0

1000

2000

3000

0

0.005

0.01

0

1000

2000

3000

0

1000

2000

3000
0

1000

2000

3000

0

0.005

0.01

0

1000

2000

3000

 
a) m=n=5        b) m=n=7 

0

1000

2000

3000
0

1000

2000

3000

0

0.0025

0.005

0.0075

0.01

0

1000

2000

3000

0

1000

2000

3000
0

1000

2000

3000

0

0.005

0.01

0

1000

2000

3000

 
a) m=n=9        b) m=n=11 

Figure 6: Progressive approximations of the load function – uniformly distributed load 
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Graphical examples on the quality of the approximation of a constant load by means of a 

richer and richer sine series are represented in Figure 6 plotting the series in equation (49) 

truncated at m and n as follows: 

 
n m

ij
j 1 i 1

i x j y
p(x,y) p sin sin

a b= =

π π
= ⋅ ⋅∑∑  . (52) 

 

Representing a function through its truncated Fourier series conceptually consists in 

reducing the dimension of the structural problem at a dimension related to the values of m 

and n. 

After expressing the displacement function w=w(x,y) in Fuorier series: 

 

ij
j 1 i 1

i x j y
w(x,y) w sin sin

a b

∞ ∞

= =

π π
= ⋅ ⋅∑∑  . (53) 

 

such expression can be introduced in into the equation (45) along with the expression of p 

based on equation (49) for deriving the coefficients wij depending by pij: 
 

4 2 2 4

x y ij
j 1 i 1

ij
j 1 i 1

i i j j i x j y
D 2H D w sin sin

a a b b a b

i x j y
p sin sin

a b

∞ ∞

= =

∞ ∞

= =

 π π π π π π       
+ + ⋅ ⋅ =        

         

π π
= ⋅ ⋅

∑∑

∑∑

 , (54) 

 

and, finally: 
 

0
6

ij
ij 4 2 2 44 2 2 4

4
x yx y

16p

p i j
w

i i j ji i j j
D 2H DD 2H D

a a b ba a b b

π ⋅ ⋅
= =

                 + +π + +                
                

       

 

i, j=1,3,5,7… . 

(55) 

 

Consequently, the complete expression of the displacement function can be placed in the 

following shape: 
 

0
6 4 2 2 4

i 1 j 1

x y

16p 1 i x j y
w(x,y) sin sin

a bi i j j
i j D 2H D

a a b b

∞ ∞

= =

π π
= ⋅ ⋅

 π        
⋅ ⋅ + +        

         

∑∑          

 

i, j=1,3,5,7… . 

(56) 
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2.2 Application of the method to a RC plate supported on the boundary 

The orthotropic plate model can be proficiently utilized for simulating the key aspects of 

the behaviour of various structural systems; those listed below are among the most common 

ones: 

- reinforced concrete plates, whose anisotropy (even being often neglected in the practical 

applications) theoretically derives by the possibly different amount of steel reinforced 

placed in the two main directions; 

- steel-concrete composite bridge decks, in which the two order of steel beams in the two 

directions of the bridge (namely, parallel and normal to the bridge axis) result in an 

orthotropic behaviour of the deck; 

- laminated composite materials, made out of two materials (usually called “phases”), 

namely a matrix, usually made out epoxy-resin, and some fibers, possibly carbon-, glass- 

or aramid-based, directed in one or two (but even four or more) direction in plan. 

The bending behaviour of the above materials as well as the one of other structural 

systems can be reproduced through the orthotropic plate model. 

For instance, a possible application of that model can be proposed by considering a RC 

plate; the following calculations assume that no cracking occurs in concrete. 

Since anisotropy basically derives by the possibly different amount of steel rebars in the 

two directions, we can assumed that both Young moduli and Poisson ratios in the two 

directions are those of concrete: 
 

x y cE E E= =  , xy yx cν = ν = ν  . (57) 

 

The stiffness coefficients defined in equation (45) can be evaluated for the particular 

problem at hand by considering the homogenization procedure for all the relevant geometric 

properties of concrete; such procedure results by the two following hypotheses: 

- linear behaviour of the two materials (namely, concrete and steel) described by their 

Young moduli Ec and Es, respectively; 

- no relative deformation between steel rebars and concrete. 

Starting by those hypotheses, the equivalent moment of inertia of the plate section in the 

two direction can be easily derived once the value of the modular ratio neq=Es/Ec ha been 

defined. Consequently, the following expression of the stiffness coefficients involved in 

equation (45) are defined as follows 
 

( ) ( )
( ) = = ⋅ + − ⋅

 
− υ − υ

eq
c c,xeq c

x c,x eq s,x2 2
c c

E I E
D I n 1 I

b 1 b 1
 , (58) 

( ) ( )
( ) = = ⋅ + − ⋅

 
− υ − υ

eq
c c,yeq c

y c,y eq s,y2 2
c c

E I E
D I n 1 I

a 1 a 1
 . (59) 

 

Since the following transformation can be considered in the definition of the coefficient 

Dl defined in (30) 
 

( ) ( )
νν

= = = ν = ν
⋅ ⋅ − ν ⋅ ⋅ − ν

eqeq
c y yeq eq eqc x x

l c x c y2 2
c c

E IE I
D D D

12 b 1 12 a 1
 (60) 

 

it can be written in the following form: 
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eq eq eq
l c x yD D D= ν  , (61) 

 

and for similar reasons the following transformation can be considered for the coefficient Dxy: 
 

( ) ( )
= = = =

⋅ + ν ⋅ + ν

eq eqeq eq
c c,y c,yc c,x c,xeq c c

xy
c c

G I IG I IE E
D

b a 2 1 b 2 1 a
 , (62) 

 

and finally 
 

( )

( )
( )

( )
( )⋅ − ν ⋅ − ν − ν

= = = ⋅
⋅ − ν ⋅ − ν

eqeq
c,yc,xc c c c ceq eq eq

xy x y2 2
c c

IIE 1 E 1 1
D D D

b a 22 1 2 1
 . (63) 

 

Finally, since 
 

eq eq eq eq
eq l xy x yH D 2D D D= + =  , (64) 

 

and equation (45) can be finally placed in the following shape for the problem at hand: 
 

4 4 4
eq eq eq eq

x x y y 04 2 2 4

w w w
D D D D p

x x y y

∂ ∂ ∂
+ ⋅ + =

∂ ∂ ∂ ∂
 ,  (65) 

 

or, equivalently, 
 

eq eq4 4 4
y y 0

4 eq 2 2 eq 4 eq
x x x

D D pw w w

x D x y D y D

∂ ∂ ∂
+ ⋅ + =

∂ ∂ ∂ ∂
 .  (66) 

 

Introducing the following scale change in y-direction,  
 

= ⋅
eq

x
41 eq

y

D
y y

D
 ,  (67) 

 

the following changes have to be introduced in the partial derivatives: 
 

eq2 2
x

2 eq 2
y 1

Dw w

y D y

∂ ∂
=

∂ ∂
 ,  

eq4 4
x

4 eq 4
y 1

Dw w

y D y

∂ ∂
=

∂ ∂
 , (68) 

 

and, finally, the equation (66) can be transformed to obtain a shape formally equivalent to the 

one derived for the case of isotropic material: 
 

∂ ∂ ∂
+ ⋅ + =

∂ ∂ ∂ ∂

4 4 4
0

4 2 2 4 eq
1 1 x

pw w w
2

x x y y D
 .  (69) 
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Finally, the general solution in double Fourier series described in equation (56) can be 

simplified as follows as a result of the formal transformation of the above equation: 
 

1

0
1 6 2

2 2i 1 j 1
eq

x

j yi x
sin sin

16p a bw(x,y )

i j
i j D

a b

∞ ∞

= =

ππ
⋅

=
π     

⋅ ⋅ +    
     

∑∑       i, j=1,3,5,7… . 
(70) 

 

The maximum displacement of the plate is achieved in the mid point of its plan and 

consequently for a point of coordinate (x,y)=(a/2,b/2): 
 

0
max 6 2

2 2i 1 j 1
eq

x

i j
sin sin

16p 2 2w

i j
i j D

a b

∞ ∞

= =

π π
⋅

=
π     

⋅ ⋅ +    
     

∑∑       i, j=1,3,5,7… . 
(71) 

 

The following algebraic transformation can be finally introduced in the above expression 

for simplifying its numerical application: 
 

( )

( )

m n
14

2
0

max 6 eq 2
2i 1 j 1x 2

116p a
w

D
a

i j i j
b

+
−∞ ∞

= =

−
=

π ⋅   
⋅ +  

   

∑∑       i, j=1,3,5,7… . 
(72) 

 

Finally, an well approximate solution can be obtained by truncating the above series at 

the third terms in both i and j: 
 

4
0

max 6 eq 2 2 2 2
2 2 2 2x

16p a 1 1 1 1
w

D
a a a a

1 3 9 3 1 9 729 1 1
b b b b

 
 
 
 

≈ − − + 
π ⋅                

+ ⋅ + ⋅ + ⋅ ⋅ + ⋅               
                       

. (73) 

 

and in the case of square plate: 

 
4 4

0 0
max 6 eq eq

x x

16p a p a1 1 1 1
w 0,00406

4 300 300 2916D D

 
≈ ⋅ − − + ≈ ⋅ 

π ⋅  
 . (74) 
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